연구성과

화학 박수진 교수 공동연구팀, 산호 닮은 실리콘으로 전기자동차 5배 빠르게 충전한다

2019-03-06 904

[에너지 밀도와 출력 문제 모두 해결…고속 충전 가능한 전기자동차 상용화 기대]

박수진교수, 로드니 루오프 IBS연구단장, 루재건박사, 빈 왕 IBS 연구위원회

전기자동차 배터리의 용량을 높이면서도 더 빠르게 충전할 수 있는 신소재가 개발됐다. 새로 개발된 소재는 산호와 꼭 닮은 모양의 실리콘 소재로, 전기자동차용 배터리의 흑연 음극 소재를 대체할 수 있다.

화학과 박수진 교수는 기초과학연구원(IBS, 원장 김두철) 로드니 루오프(Rodney S. Ruoff) 다차원 탄소재료 연구단장 등 국내외 연구진과 공동으로 고속충전이 가능한 리튬이온 배터리용 실리콘 소재를 개발했다. 이 소재를 배터리의 음극으로 사용했을 때 기존 대비 5배 더 빨리 충전되고, 2배 이상 용량을 늘릴 수 있는 것은 물론 충‧방전을 반복해도 안정적인 구조를 유지한다는 점도 확인했다.

고성능 전기자동차의 상용화를 위해서는 지금보다 배터리의 에너지 용량을 늘리고, 충전시간을 단축하는 일이 필요하다. 하지만 현재 배터리의 음극에 사용되는 소재인 흑연은 이론적인 용량 한계가 있을뿐더러, 고속충전 시 음극 표면에 리튬 금속이 석출돼 배터리 전체의 성능과 안정성을 낮춘다는 문제가 있다.

이런 상황에서 흑연을 대신할 음극 소재로 실리콘이 주목받고 있다. 실리콘은 흑연보다 용량이 10배 이상 커서 고에너지 배터리*1에 적용하기 유리하기 때문이다. 하지만 실리콘은 충‧방전 시 부피 변화가 커서 잘 깨지고, 깨진 표면을 따라 고체전해질 계면층*2이 두껍게 형성돼 리튬 이온의 전달 특성을 저하시킨다는 단점이 있다. 이 때문에 실리콘을 이용한 고에너지‧고속충전 리튬 이온 배터리를 개발하는 일은 아직까지 풀어야 할 숙제로 남아있다.

공동연구진은 물질 단계부터 새로운 설계를 제안하며 이 문제를 해결했다. 우선 구멍(공극)이 많은 실리콘 나노와이어*3 구조체를 재료로 사용해 실리콘의 부피 팽창 문제를 완화했다. 내부 공극들은 충전 시 팽창한 실리콘을 받아들여 실리콘이 깨지지 않고 견디도록 돕는다.

이후 다공성 실리콘 나노와이어를 높은 밀도로 연결시키고, 여기에 탄소를 나노미터 두께로 얇게 씌웠다. 이렇게 만들어진 산호 모양의 ‘실리콘-탄소 복합체 일체형 전극’은 전기 전도도가 향상돼 고속충전이 가능했다.

공동 제1저자인 빈 왕(Bin Wang) 다차원 탄소재료 연구단 연구위원은 “실리콘 내부의 공극과 산호 모양의 다공성 구조는 리튬 이온을 빠르게 전달하게 돕고, 탄소층은 전극의 저항을 줄이는 동시에 계면 안정성까지 확보한다”고 설명했다.

일체형 전극 구조는 배터리 에너지 밀도를 높이는 데 기여한다. 기존 전극은 리튬 이온이 포함된 활물질과 전자를 전해주는 집전체, 둘을 이어주는 도전제와 바인더 등이 필요했다. 공간을 많이 차지해 에너지 밀도도 떨어뜨리는데, 이 문제를 개선한 것이다. 공동 제1저자인 류재건 박사는 “일체형이 되면서 에너지 저장 공간이 늘어났고 산호 모양의 3차원 구조로 전도성도 향상됐다”며 “10분만 충전해도 흑연의 4배 이상 용량을 유지했다”고 말했다.

박수진 교수는 “산호 모양 실리콘-탄소 일체형 전극은 똑같은 부피에서 에너지 밀도와 출력 밀도를 모두 높이는 ‘두 마리 토끼를 잡는 기술’”이라며 “고속충전의 필수요소를 모두 충족한 최초의 실리콘 기반 음극 소재”라고 강조했다.

이어 로드니 루오프 단장은 “이 기술은 훗날 고속충전이 가능한 고용량 양극 소재와 함께 쓰여 더 높은 수준의 리튬 이온 배터리를 실현할 것이며 전기차 배터리 산업에 크게 기여할 것”이라고 전망했다.

연구결과는 세계적인 학술지 에이씨에스 나노(ACS Nano, IF 13.709) 최신호(2월 26일자)에 실렸다.
 


1. 고에너지 배터리
단위부피 당 에너지 밀도가 높은 배터리. 같은 부피에 더 많은 에너지를 저장하므로 배터리 크기를 줄여도 기존 같은 성능을 보일 수 있다.

2. 고체전해질 계면층
첫 번째 충전 과정 중 음극 표면에서 전해액과 첨가제 등이 분해되면서 생기는 층이다.

3. 실리콘 나노와이어
나노미터(nm‧1nm는 10억 분의 1m) 단위의 크기를 가지는 작은 막대기둥