연구성과

신소재 조문호 교수팀, 빛으로 2차원 반도체 전도도 10만 배 높여

2018-09-17 1,063

[레이저로 원자두께 반도체 도핑 성공…단일 집적회로 구현도]

신소재조문호교수, 서승영연구원

신소재 조문호 교수팀 (기초과학연구원 원자제어 저차원 전자계 연구단(단장 염한웅) 부연구단장)은 2차원 반도체에 빛을 쪼이면 스스로 도핑*1이 되는‘레이저 도핑’기술을 개발했다. 수 초간 레이저를 조사하는 것만으로 도핑을 할 수 있어 쉽고 경제적인 기술로, 연구진은 2차원 반도체 단일 집적 회로*2를 구현하는 데도 성공했다.

차세대 반도체 후보로 주목받는 원자층 2차원 반도체는 둘둘 말리는 전자기기, 사물인터넷(IoT) 전자 부품, 극초소형 컴퓨터를 구현하기 위한 핵심 소재다. 그 동안의 기술적 난제는 고성능 회로를 만들기 위한 도핑 기술이 아직 없다는 점이었다.

도핑은 일종의 불순물을 주입해 반도체의 전도율을 증가시키는 공정으로 전자기기 제작에 필수적이다. 상용화된 전자기기는 액체나 기체 상태의 이온을 주입해 도핑한다. 하지만 원자 두께로 얇은 2차원 반도체에 불순물을 주입할 경우 깨질 가능성이 있고, 또 농도를 섬세하게 조절하기 어렵다는 한계가 있었다.

신소재 서승영 연구원이 제1저자로 주도한 이번 연구는 인위적 불순물을 주입하지 않고도 가시광선 조사를 통해 원자층 2차원 반도체 트랜지스터 소자의 p-형 도핑에 성공했다. 연구진은 주사터널링현미경(STM)*3으로 반도체를 관찰하며, 전자가 많은 형태의 n-형 반도체에 초록색(파장 532nm) 레이저 빛을 수 초간 조사했다. 레이저가 조사된 반도체 표면과 내부에는 국소적인 원자결함이 생기고, 이후 결함이 생긴 공간으로 공기 중의 산소로부터 정공이 주입되며 최종적으로 정공이 많은 p-형으로 도핑됐다.

연구팀은 빛의 세기와 조사 시간을 조절해 도핑 농도를 제어하는 데도 성공했다. 정공의 농도에 따라 반도체 소자의 전기전도도는 최대 10만 배까지 높아졌다. 이번에 개발된 레이저 도핑 공정은 대기 중에서 수 초 내에 빠르고, 대면적 도핑이 가능하기 때문에 기존 도핑 기술에 비해 쉽고 경제적이며, 집적 회로 상용화 기술에 곧바로 응용될 수 있다는 장점이 있다.

이어 연구팀은 개발한 도핑 공정을 이용해 다양한 2차원 반도체 회로를 제작하는 데도 성공했다. 이텔루륨화몰리브덴(MoTe2)*4 화합물에 레이저 도핑을 접목해 2차원 양극성 접합 트랜지스터(Bipolar Junction Transistor)*5, 2차원 광전압 변환기 등을 구현했다. 원자층 2차원 반도체를 재료로 도핑하고, 실제 회로 구현으로까지 이어진 첫 사례다. 제작된 반도체 회로는 매우 우수한 전류 증폭 성능을 보였다.

이번 연구를 이끈 조문호 교수는 “반도체 물질과 빛의 상호 작용에 대한 기초 과학 연구가 차세대 반도체 회로 응용 기술로 바로 환원됐다는 데 의의가 있다”며 “이러한 기초과학-응용기술 순환 일체형 연구는 미래 기술 개발에 있어 새로운 가치 창출 방식의 핵심이 될 수 있다”고 밝혔다.

이번 연구 성과는 전자 소자 분야 세계적인 학술지인 네이처 일렉트로닉스(Nature Electronics) 온라인 판에 9월 14일 0시(한국시간)에 게재됐다.
 


1. 도핑
순수 반도체에 불순물을 주입해 성능을 향상시키기 위한 공정

2. 단일 집적 회로
한 가지 물질에 반도체 회로가 구성되는 집적회로

3. 주사터널링현미경(STM)
맹인이 점자를 통해 글을 파악하는 것처럼, 얇은 금속 탐침을 이용해 표면의 요철을 읽어 원자 수준의 해상도로 이미지를 얻는 기술

4. 이텔루륨화몰리브덴(MoTe2)
몰리브덴(Mo) 원자 하나에 텔루륨(Te) 원자가 두 개 붙어 있는 층상 구조를 가지는 화합물로, 실리콘과 유사한 특성을 가진다

5. 양극성 접합 트랜지스터(Bipolar Junction Transistor)
2개의 p-n 접합구조의 결합으로 구성되는 트랜지스터이다. 이미터, 베이스, 컬렉터 세 전극으로 구성되며, 스위치 또는 전류 증폭장치로 사용된다